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SUMMARY

Bio-inspired mechanics of locomotion generally consist of the interaction of flexible structures with the
surrounding fluid to generate propulsive forces. In this work, we extend, for the first time, the viscous
vortex particle method (VVPM) to continuously deforming two-dimensional bodies. The VVPM is a
high-fidelity Navier–Stokes computational method that captures the fluid motion through evolution of
vorticity-bearing computational particles. The kinematics of the deforming body surface are accounted for
via a surface integral in the Biot–Savart velocity. The spurious slip velocity in each time step is removed
by computing an equivalent vortex sheet and allowing it to flux to adjacent particles; hence, no-slip
boundary conditions are enforced. Particles of both uniform and variable size are utilized, and their relative
merits are considered. The placement of this method in the larger class of immersed boundary methods
is explored. Validation of the method is carried out on the problem of a periodically deforming circular
cylinder immersed in a stagnant fluid, for which an analytical solution exists when the deformations are
small. We show that the computed vorticity and velocity of this motion are both in excellent agreement
with the analytical solution. Finally, we explore the fluid dynamics of a simple fish-like shape undergoing
undulatory motion when immersed in a uniform free stream, to demonstrate the application of the method
to investigations of biomorphic locomotion. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Biological locomotion mechanics at moderate Reynolds number, as evident in creatures such as
insects and fish, is fundamentally based on the reaction force supplied by the fluid against an
accelerating and deforming surface. For example, the undulatory wave sent from the head to the
tail of an eel causes an oscillatory exchange of energy with the adjacent fluid, resulting in a net
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forward thrust from the unbalanced tail motion [1]. This tail motion shares many common features
with the wing kinematics of a hovering insect, characterized by flapping in a horizontal stroke
plane to produce a net lift [2]. Vorticity production and shedding are a hallmark of the flows
produced by these mechanisms [3]. Previous investigations have revealed that the manner in which
vorticity is produced and processed by the flapping or undulating surface has a profound effect
on the thrust efficiency of a swimming organism [4] and lift generation of a flapping insect wing
[5]. The flexibility of the creature’s body and appendages almost certainly modulates this vorticity
interaction, though to what extent is still unclear. It is also unclear under what circumstances the
creature is actively controlling its body shape or allows it to respond passively to the adjacent flow.
This mix of active and passive flexibilities has important implications in the energy efficiency of
locomotion.

The computational tool presented in this work, an extension of the viscous vortex particle
method (VVPM) to two-dimensional deforming bodies, is motivated by the desire to address such
questions. Computational approaches that focus on vorticity have a natural appeal for moderate-
Reynolds number biolocomotion studies, in light of the demonstrated relevance of this quantity.
Vortex particle methods [6–9] represent the evolution of a fluid flow by the advection of regularized
vorticity-bearing particles. The particle formulation enables a natural adaptability to the flow. A
number of critical developments in the past 20 years have enabled vortex particle methods for
high-fidelity Navier–Stokes simulations. The computation of the particle velocities through the
Biot–Savart integral, which is inherently an O(N 2) process, is accelerated to O(N ) with the help
of the fast multipole method [10, 11]. Viscous diffusion (and other transport processes) can be
modeled to arbitrary order of accuracy by the technique of particle strength exchange [12, 13]. For
enforcement of boundary conditions at an impenetrable no-slip surface, Koutmoutsakos et al. [14]
developed a technique of identifying the spurious slip velocity with an equivalent vortex sheet and
then allowing the sheet vorticity to flux to the adjacent vortex particles.

The vorticity creation technique developed in [14] works, in principle, regardless of whether the
body is rigid or deforming. In spite of this, many previous applications of the method (e.g. [15–17])
have focused exclusively on the flow past rigid bodies of relatively simple shape, in part because
these implementations relied on distributions of particles that initially conformed to the body
shape. Associated with such distributions are remeshing kernels with special constructions near
boundaries. However, recent studies [18, 19] have shown that such special constructions are largely
unnecessary, as the vorticity creation process has an inherent ‘self-corrective’ feature in each time
step. Particles are instead allowed to start at the nodes of a Cartesian grid. Any circulation leaked
into the body by particles that overlap the surface is immediately redistributed to the adjacent
particles during the subsequent flux of the surface vortex sheet [16, 17, 19]. The price for this
simplicity is that the method reverts to first-order accuracy in the vicinity of the body.

It is hoped that the VVPM methodology, as extended in this work and in future work, will
provide a complementary numerical tool to methods developed for fluid–structure interaction in
previous studies. For example, the arbitrary Lagrangian–Eulerian methods (ALE) and immersed
boundary (IB) methods are two classes of methods to address solid surface deformations adjacent
to the fluid. ALE methods reconstruct a mesh to allow local adaptation to the motion of solid
structures. These methods allow high-order accuracy but only allow relatively small deformations,
and remeshing is still required to eliminate badly distorted elements. The IB methods, in contrast,
permit larger deformations, in that they treat solid boundaries as distributed force functions in
a single computational domain that covers both the body and fluid. However, accuracy greater
than first order is difficult to achieve. Furthermore, because of the isotropic grid setup near the
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body surface, IB methods cannot be easily applied to high Reynolds number flows, for which
boundary layers are thin. Both methods have been broadly utilized and successfully applied to
numerous problems in biological locomotion [20–24]. The method proposed in this work is not
meant to replace these existing methods, but to complement them. Cottet [25] has shown that the
vortex particle method can be a powerful tool to explore fluid–structure interactions because of
their allowance for large deformations. He incorporated an IB approach into the vortex particle
method and compared it with ALE methods in a simple one-dimensional Burger’s equation coupled
with linear elasticity. In our work, the influence of body motion is partially accounted for via
a surface integral in the velocity expression, but the presence of the body is communicated by
vorticity creation and flux to adjacent particles. This approach can be shown equivalent to an IB
method [26].

The initial distribution of particles in the VVPM need not conform to the surface, and their
subsequent convection allows a natural adaptivity, which makes them well suited for flows around
complex (and, in particular, deforming) shapes. This paper presents a VVPM for two-dimensional
deforming bodies. The principal new development is a recasting of the surface influence in the
Biot–Savart integral, with an associated change in the equation for the vortex sheet strength.
The method is validated on the problem of a circular cylinder undergoing small periodic shape
deformation in a quiescent fluid; the analytical solution of this problem is presented in Appendix A.
The error of the method is explored using both a Cartesian and a polar mapping of the particles.
The method is finally demonstrated on the undulatory shape change of a fish-like body immersed
in a uniform free stream.

2. METHODOLOGY

In this section, the VVPM for two-dimensional deforming bodies is presented. The presentation
focuses on new developments, particularly the use of a surface-modified version of the Biot–Savart
integral for computing the velocity field. Details of the other aspects of the method are omitted,
and the reader is referred to previous work, notably [8].

2.1. General governing equations

VVPMs solve the Lagrangian form of the Navier–Stokes equations and utilize vorticity-carrying
particles as computational elements. In particle form, the equations are written as separate convec-
tion and diffusion problems that evolve the particle positions xp and vorticities xp. These equations
are usually solved by a viscous splitting algorithm in substeps: particles are convected by the
velocity field u over a small time step, and then particle strength exchange [12] is used to approx-
imate the Laplacian operator in the diffusion problem on the static particles. The no-slip boundary
conditions are enforced by solving for and fluxing a vortex sheet into adjacent particles in the fluid.

For a flow past a general body in motion, the velocity u includes particle-induced velocity u�,
velocity due to a vortex sheet on the body surface, u�, velocity induced by the deformation of the
surface, us , and free stream velocity U∞,

u=u�+u�+us+U∞ (1)

The contribution from the particles, u�, is expressed in terms of a discrete version of the
Biot–Savart integral. The surface vortex sheet contribution, u�, is a surface integral with a
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Biot–Savart kernel. When the body is rigid, the only contribution to us is due to the rotation of the
body; in such circumstances, the region occupied by the body interior can be regarded as a patch
of uniform vorticity, equal to twice the angular velocity, and us is then expressed via a Biot–Savart
integral over the body interior.

When the body is deforming, however, us cannot be simply expressed in terms of interior
vorticity. It is more natural to express it as an integral over the body surface, relying only on the
kinematics of the deforming surface. Suppose that Sb denotes a closed surface and V f represents
an external fluid region. We seek an expression for velocity us(x) when x∈V f . In order to derive
the contribution from the body deformation, the only assumptions we make is that ∇ ·u=0 in V f
and that the deformation is volume-preserving.

Using Cartesian index notation, we can write

�
�x j

[
ui (x)

�
�x j

G(x,x′)−G(x,x′) �ui
�x j

(x′)
]
=−ui (x)�(x−x′)+G(x,x′)(∇×x)i (2)

where G(x,x′) is Green’s function for the negative Laplacian, that is, ∇2G=−�. By integrating
the above equation over V f , applying the divergence theorem and switching x and x′, we arrive at

u(x) = ∇×
∫
V f

G(x,x′)x(x′)dV (x′)

+
∫
Sb

[−(n′×x(x′))G(x,x′)+u(x′)(n′ ·∇′G(x,x′))−(n′ ·∇′u)G(x,x′)]dS(x′) (3)

where n′ denotes the normal vector at x′ ∈ Sb directed into V f . It should be noted that n′ ·∇′u
represents the normal derivative of the velocity (evaluated from the fluid side) at the surface
point x′.

We seek a simpler form for the surface integral in Equation (3), which we denote by uB(x). It
is noted that n×(∇×u)+n·∇u=n·(∇u)T, hence, the integral becomes

uB(x)=
∫
Sb

[−n′ ·(∇′u)TG(x,x′)+u(x′)(n′ ·∇′G)]dS(x′) (4)

The first term of the above surface integral can be further manipulated. Its i th component can be
written, using the divergence theorem to convert to a volume integral and back again to a surface
integral, as

∫
V f

�
�x ′

j

(
�u j

�x ′
i

G

)
dV (x′) =

∫
V f

[
�2

�x ′
i�x

′
j

(u jG)− �
�x ′

j

(
u j

�G
�x ′

i

)]
dV (x′)

=
∫
V f

[
�

�x ′
i

(
�u j

�x ′
j

G+u j
�G
�x ′

j

)
− �

�x ′
j

(
u j

�G
�x ′

i

)]
dV (x′)

= −
∫
Sb

(
n′
i u j

�G
�x ′

j

+n′
j u j

�G
�x ′

i

)
dS(x′) (5)
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The divergence-free condition on velocity has been used in the final step. Thus, the complete surface
integral uB becomes

∫
Sb

[
n′
j u j

�G
�x ′

i

+ �G
�x ′

j

(uin
′
j −u jn

′
i )

]
dS(x′) (6)

Consequently, the revised contribution of body surface motion to a point in the fluid is given by

uB(x)=
∫
Sb

[∇G(x,x′)×(n′×u(x′))−∇G(x,x′)(n′ ·u(x′))]dS(x′) (7)

This shows that uB can be regarded as the contribution from surface distributions of vortex and
source singularities.

The velocity in the integrand of (7) is that which is found when the surface is approached from
within the fluid, which we denote by u+; the velocity obtained by approaching from within the
body is u−, which is set equal to the local velocity of the deforming surface, ub. The kinematical
condition of no-flow-through implies a jump in the tangential components of the velocities on
either side of the surface, which is equal to the strength, c, of a vortex sheet, namely,

n·u+ =n·ub (8)

n×u+ =n×ub+c (9)

Thus, the velocity in the fluid can be rewritten as

u(x)=
∫
V f

∇G(x,x′)×x(x′)dV (x′)+
∫
Sb

∇G(x,x′)×c(x′)dS(x′)+us(x)+U∞ (10)

which now splits the surface integral into a contribution from the surface vortex sheet and a
contribution from the surface kinematics,

us(x)=
∫
Sb

[∇G(x,x′)×(n′×ub(x′))−∇G(x,x′)(n′ ·ub(x′))]dS(x′) (11)

It is important to stress that Equation (10), in contrast to previous implementations of vortex
methods [14, 16, 19], contains no volume integrals over the interior of the body. Also, it is worth
noting that, although this formulation has been derived by assuming volume-preserving deforma-
tions, it is possible to include the effect of volume-changing kinematics in the method.

2.2. Identification of a surface vortex sheet

When Equation (10) is evaluated at a point on the surface approached from within the body, x−
s ,

the left-hand side vanishes, it takes the form

0=
∫
V f

∇G(xs,x′)×x(x′)dV (x′)+ 1

2
(n×c)|xs +

∫
Sb

∇G(xs,x′)×c(x′)dS(x′)

+1

2
[n×(n×ub)−n(n·ub)]|xs +us(xs)+U∞ (12)
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Figure 1. Oscillatory deformation of a circular cylinder, set at a0/R0=0.2 for demonstration purposes.
Note that the actual deformation imposed in the simulation is a0/R0=0.02.

where the surface integrals are understood to be principal-value integrals. The expression in square
brackets, which arose from evaluating us at x−

s , reduces simply to −ub(xs). Consequently, the
vector product of this equation with the local normal vector furnishes an integral equation for the
surface vortex sheet strength:

1

2
c(xs)−n×

∫
Sb

∇G(xs,x′)×c(x′)dS(x′)

=
(
1

2
ub(xs)−us(xs)−

∫
V f

∇G(xs,x′)×x(x′)dV (x′)
)

×n (13)

where us is given by Equation (11). In practice, the surface integrals in this equation are discretized
with flat boundary elements, and the vortex sheet strength is taken as uniform on each element.
The volume integral is the classical Biot–Savart integral, and the particle representation of the
vorticity leads to a discrete version of this integral. Although expressions (10) and (13) differ from
those used for flow past a rigid body, the discretization procedures are the same. Details can be
found in [19].

Equation (13) represents the identification of spurious slip with an equivalent vortex sheet with
strength distribution c. Its formulation here differs from previous implementations, in that it entirely
avoids volume integrals over the interior of the body. As in previous implementations [14, 16, 19],
the slip is eliminated by fluxing the vorticity in this sheet to the adjacent fluid by solving a linear
diffusion problem with Neumann boundary condition. Since the vortex sheet is the means by which
this new circulation is introduced to the fluid, then we enforce Kelvin’s circulation theorem during
this process and account for circulation leaked into the body during the particle remeshing process
by redistributing it to the particles when the vortex sheet is fluxed. The flux procedure utilizes a

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1299–1320
DOI: 10.1002/fld



A VISCOUS VORTEX PARTICLE METHOD FOR DEFORMING BODIES 1305

x / Do

y
/D

o

-1.5
-1.5

-1

-0.5

0

0.5

1

0

1

1.5

-1 -0.5 0 0.5 1 1.5

x / Do

y
/D

o

-1.5
-1.5

-1

-0.5

0.5

1.5

-1 -0.5 0 0.5 1 1.5

x / Do

y
/D

o

-1.5
-1.5

-1

-0.5

0

0.5

1

0

1

1.5

-1 -0.5 0 0.5 1 1.5

x / Do

y
/D

o

-1.5
-1.5

-1

-0.5

0.5

1.5

-1 -0.5 0 0.5 1 1.5

(a) (b)

(c) (d)

Figure 2. Vorticity contours at four instants for Re� =100: (a) t/T =8.25;
(b) t/T =8.5; (c) t/T =8.75; and (d) t/T =9.

semi-analytical scheme developed by Leonard et al. [27]. A correction is added to each particle
in the vicinity of the panel to ensure strict conservation of the distributed panel strength [16].

3. RESULTS

This section presents the results of application of the VVPM for deforming bodies to two problems.
The first problem consists of the oscillatory deformation of a circular cylinder immersed in a
stagnant fluid. This problem admits an analytical solution for small deformation; hence, it is used
as a validation for the numerical methodology. The second problem consists of a fish-like shape
undergoing prescribed undulatory deformation in a uniform free stream.

3.1. Oscillatory deformation of a circular cylinder

Consider a closed curve described parametrically by

xs(�, t)=a(t)cos� (14)

ys(�, t)=b(t)sin� (15)
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Figure 3. Vorticity contours at four instants for Re� =500: (a) t/T =8.25;
(b) t/T =8.5; (c) t/T =8.75; and (d) t/T =9.

where �∈[−�,�). These equations describe the perimeter of an ellipse with time-varying semi-
major and semi-minor axes a(t) and b(t), respectively. We prescribe a(t) with a sinusoidal variation
in time and constrain b(t) to preserve the area enclosed by the curve

a(t)= R0+a0 sin(�t) (16)

b(t)= R2
0/a(t) (17)

where R0 is the radius of the initially circular shape of the curve. The prescribed surface velocity,
ub, in Cartesian coordinates is (ȧ cos�, ḃ sin�), where (̇) denotes the time derivative. The Reynolds
number in this problem is defined as Re� =4�R2

0/�.
The problem is nondimensionalized by the oscillation frequency, �, and the initial radius, R0

(vorticity contours by initial diameter D0). When the deformation amplitude, a0/R0, is small, the
polar angle � is approximately equal to the parameter �, and the surface velocity components
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Figure 4. Circumferential velocity profile along �=45◦ from t/T =8.25 to t/T =9
at Re� =100. Analytical solution, —; variable VVPM, �; and uniform VVPM, �:

(a) t/T =8.25; (b) t/T =8.5; (c) t/T =8.75; and (d) t/T =9.

(now in polar coordinates) have the approximate form

us,r (�, t)

�R0
= a0

R0
cos�t cos2� (18)

us,�(�, t)

�R0
= a0

R0
cos�t sin2� (19)

For such small deformation, the fluid has an approximately linear response. It can be shown that
the velocity components and the vorticity of the resulting flow are

ur (r,�, t)

�R0
=2

a0
R0

Re[Ar (	r)exp(i�t)]cos2� (20)

u�(r,�, t)

�R0
=2

a0
R0

Re[iA�(	r)exp(i�t)]sin2� (21)

�(r,�, t)

�
=2

a0
R0

Re[iW+(	r)exp(i�t)]sin2� (22)
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where 	=(�/�)1/2 is the wavenumber associated with viscous diffusion during the oscillation
cycle (T =2�), and the radial eigenfunctions are

Ar (r)=−2
exp(i�/4)

K+
1 (	R0)

K+
2 (r)

r
− 1

2

K+
3 (	R0)

K+
1 (	R0)

(
R0

r

)3

(23)

A�(r)=−i
exp(i�/4)

K+
1 (	R0)

K+′
2 (r)+ i

2

K+
3 (	R0)

K+
1 (	R0)

(
R0

r

)3

(24)

W+(r)= 	R0 exp(i�/4)

K+
1 (	R0)

K+
2 (r) (25)
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Figure 5. Vorticity profile along �=45◦ from t/T =8.25 to t/T =9 at Re� =100.
Analytical solution, —; variable VVPM, �; and uniform VVPM, �: (a) t/T =8.25;

(b) t/T =8.5; (c) t/T =8.75; and (d) t/T =9.
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Figure 6. Radial velocity profile along �=0◦ from t/T =8.25 to t/T =9 at Re� =100.
Analytical solution, —; variable VVPM, �; and uniform VVPM, �: (a) t/T =8.25;

(b) t/T =8.5; (c) t/T =8.75; and (d) t/T =9.

Note that 	R0=Re1/2� /2. The function K+
n is composed of Kelvin functions of the first kind

K+
n (z)=kern(z)+ ikein(z) (26)

In the present case, the deformation amplitude is set at a0/R0=0.02. Figure 1 illustrates a
few instants of the deforming cylinder. To demonstrate the influence of particle distribution with
respect to body shape, two different initial distributions were used. The first distribution consisted
of particles of uniform size arranged on a uniform Cartesian grid. The second involved the use of
a polar mapping suggested by Cottet et al. [28]

r = R0 exp x̂, �= ŷ (27)

The particles are uniformly distributed in the domain (0, log(Rmax/R0))×[−�,�) in the (x̂, ŷ)
computational space; the outer radius, Rmax, increases automatically as vorticity is diffused farther
form the cylinder. This mapping ensures that adjacent particles maintain a nearly uniform separation
from the deforming cylinder surface, thereby avoiding the loss of accuracy associated with particle
overlap [19].
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Figure 7. Circumferential velocity profile along �=45◦ from t/T =8.25 to t/T =9 at Re� =500. Analytical
solution, —; and variable VVPM, �: (a) t/T =8.25; (b) t/T =8.5; (c) t/T =8.75; and (d) t/T =9.

Both particle distributions were utilized in the problem at Re� =100. The particle spacing
adjacent to the cylinder surface (and everywhere else in the case of the uniform distribution) was
�x=0.02R0, and the time step size was �t=0.01/�. Contours of the vorticity field are depicted
at four instants in the 9th oscillation cycle—after all initial transient behavior has decayed—in
Figure 2. The problem was also simulated at Re� =500, using only the variable-sized particle
distribution. In this case, the thickness of the diffusion layer is comparatively smaller; hence, the
particle spacing is adjusted according to �x=0.008R0 and the time step size to �t=0.016/�.
The vorticity contours in Figure 3 clearly demonstrate the more compact layer.

The qualitative agreement between the VVPM results and the analytical solution is demonstrated
by comparing flow profiles along polar lines. Figures 4–6 depict the velocity and vorticity profiles
at Re� =100 along the polar lines �=45 or 0◦, at four different instants within an oscillation
period. All figures contain the comparison between the analytical solution and the results from
both the variable- and uniform-sized particles in the VVPM. It is clear that the agreement is very
good. The corresponding profiles at the higher Reynolds number of 500 are shown in Figures 7–9.
Again, the results correspond closely.

The quantitative agreement of the VVPM results with the analytical solution was assessed by
computing the L2 error of ur , labeled as 
2. The results at both Reynolds numbers, Re� =100 at
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Figure 8. Vorticity profile along �=45◦ from t/T =8.25 to t/T =9 at Re� =500. Analytical solution,
—; and variable VVPM, �: (a) t/T =8.25; (b) t/T =8.5; (c) t/T =8.75; and (d) t/T =9.

t/T =5.25 and Re� =500 at t/T =8.25, are listed in Table I. The results for Reynolds number
100 versus �x are plotted in Figure 10, where the variable-particle VVPM presents a power law
of 
2 with �x at 
2∼�x1.55 and the uniform-particle VVPM gives 
2∼�x1.61.

In summary, the simulation results demonstrate good agreement with the analytical solution for
a circular cylinder with small oscillatory deformation in a stagnant fluid at two different oscillation
Reynolds numbers.

3.2. Undulating fish-like shape in uniform free stream

In order to demonstrate the utility of the VVPM with deforming bodies to problems of biolocomo-
tion, we explore the flow produced by an undulating two-dimensional fish-like profile immersed
in a uniform freestream. The profile of the fish is prescribed at all times. Its construction, depicted
schematically in Figure 11, consists of first specifying the time-varying shape of a backbone curve,
then generating a finite number of circles with constant radii at fixed locations along the backbone.
The fish profile is generated by fitting cubic splines between fixed attachment points on the circles.
Each circle has two attachment points at opposite ends of the diameter that is parallel to the
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Figure 9. Radial velocity profile along �=0◦ from t/T =8.25 to t/T =9 at Re� =500. Analytical solution,
—; and variable VVPM, �: (a) t/T =8.25; (b) t/T =8.5; (c) t/T =8.75; and (d) t/T =9.

backbone normal from the circle’s origin; the first and last circles also have attachment points at
the ‘nose’ and ‘tail’ of the fish. Each spline is divided into straight boundary elements for the
purpose of surface integrals; the density of boundary elements is greater near the tail, where the
radius of curvature is smallest. Note that this procedure does not guarantee that the area enclosed
by the surface is preserved. However, it will be demonstrated below that the maximum area change
is negligible for the shape changes considered in this study.

The backbone undulatory motion is given by

xc(s, t)=−0.5+s (28)

yc(s, t)= A0e
ks sin[2�(s− f t)] (29)

where the parameter s varies from 0 to 1, A0=0.05 is the undulation amplitude, k=0.5 is a
growth factor, f is the frequency and the period is T =1/ f . This form, which is motivated by the
analysis of carangiform fish mechanics by Lighthill [29], produces a traveling wave of growing
amplitude that propagates from the head to the tail. By using this construction of a fish-like shape,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1299–1320
DOI: 10.1002/fld



A VISCOUS VORTEX PARTICLE METHOD FOR DEFORMING BODIES 1313

Table I. L2 Error of ur along the polar line �=0◦.

Variable Uniform

Re� =100, �x/R0=0.01 1.8388×10−5 1.5990×10−5

Re� =100, �x/R0=0.02 5.2311×10−5 4.6607×10−5

Re� =100, �x/R0=0.03 1.0274×10−4 7.9676×10−5

Re� =100, �x/R0=0.04 1.5552×10−4 1.5975×10−4

Re� =500, �x/R0=0.008 3.3603×10−5 N/A
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Figure 10. Convergence test by using L2 error of ur along polar line at 0◦ for VVPM at
Re� =100: (a) VVPM with the variable-sized particles at t/T =5.25 and (b) VVPM with

the uniform-sized particles at t/T =5.25.

the fractional change of area is bounded by |A− Ā|/ Ā<0.002, and thus the body configuration
can be regarded as area preserving.

In Appendix A, it is shown that the force exerted by the fluid on the fish surface is given by
the following expression:

F=−� f

∮
Sb

[
(x−X)×

(
�

�t
+n× dub

dt

)]
ds+�

∮
Sb
n×xds (30)

where � f is the fluid density, � is the dynamic viscosity, and X is the geometric centroid of the
fish (though in Appendix A it is noted that the result holds for an arbitrary reference point, because
of Kelvin’s circulation theorem). The first integral represents the pressure contribution, and the
second is the viscous contribution. It is noted that dub/dt is evaluated by a second-order central
difference algorithm.

It is known that tail-beat frequency (in the form of Strouhal number defined with tail amplitude)
is a key parameter in the propulsion mechanism of fish [4, 30]. Thus, in our work, we explored two
different backbone frequencies at constant Reynolds number ReU =100 based on free-stream U ,
which is set to unity. One frequency, f =1, produces net mean drag, whereas the other, f =2.5,
produces net mean thrust.
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Figure 11. Schematic of the fish design: −− backbone, � attachment points, and · skin panel centroids.
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Figure 12. Cx versus time for undulating fish: (a) f =1 and (b) f =2.5.
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Figure 13. Total circulation versus time for undulating fish: (a) f =1 and (b) f =2.5.

In both cases, �x=0.005 and �t=0.0025. The resulting time histories of the x component
of force are shown in Figure 12, in the form of the dimensionless coefficient Cx =Fx/(

1
2�U

2L),
where L is the horizontal length between the head and the tail (approximately 1.1 here). It is
interesting to note that, for f =1, the dominant frequency is the natural shedding frequency of
the static fish shape, which is quite close to the backbone oscillation frequency. However, in the
f =2.5 case, the natural shedding frequency and forcing frequency are distinct, resulting in a more
complicated history. The mean force coefficient, C̄x , in the case of f =1 is approximately 0.25
and in the case of f =2.5 is approximately −0.09. In each case, we also checked one numerical
diagnostic, the total circulation variation with time, which should be zero because of enforcement
of Kelvin’s circulation theorem. Figure 13 plots the time-varying total circulation in both cases.
The circulation remains very small and oscillatory.

Finally, Figures 14–15 present snapshots of vorticity contours corresponding to the two different
frequencies. In the case of f =1, vorticity shedding and evolution from the fish tail demonstrate
a classic Kármán vortex street. However, in the case of f =2.5, vorticity shedding and evolution
show a reverse Kármán vortex street. In both cases, the low Reynolds number also contributes to
thick boundary layers that are ‘superimposed’ on these wakes.
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Figure 14. Full views and close-up views around fish tail of vorticity contours with f =1: (a) t/T =1.18;
(b) t/T =3.68; (c) t/T =2.05; and (d) t/T =2.15.

4. CONCLUSIONS

With the goal to research the dynamics and mechanics of biolocomotion, we have developed,
implemented and validated a VVPM for two-dimensional deforming bodies. In this paper, a
technique to account for contribution from the prescribed surface motion to the velocities of the
particles inside the flow has been derived. The validation has been carried out by comparison of
simulation results with analytical solution for a periodically deforming circular cylinder immersed
in a stagnant fluid. It has been shown that our velocity and vorticity profiles agree very well with
the analytical solution and that the method converges at a reasonable rate. Finally, we explored the
flow generated by kinematics of a simple undulatory fish-like motion. We investigated different
backbone frequencies and demonstrated two standard situations, producing net mean drag and net
mean thrust, respectively.
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Figure 15. Full views and close-up views around fish tail of vorticity contours with f =2.5: (a) t/T =1.96;
(b) t/T =2.45; (c) t/T =11.39; and (d) t/T =11.78.

In future work, this computational tool will be applied to explore several open questions of
biological locomotion, including fish schooling behavior and free swimming two-dimensional
fish-like shapes. The extension to three-dimensional simulations is ongoing.

APPENDIX A

Consider an arbitrary closed body immersed in a fluid, with constant area Ab and enclosed by
surface contour Sb. It can be shown that the force exerted by the fluid on the body can be written
in a fluid momentum-conservation form [31]

F=−� f
dP
dt

+ d

dt

∫
Ab

� f ub dA (A1)
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where P is the linear impulse

P=
∫
A f

x×xdA+
∫
Ab

x×xb dA (A2)

and ∇×ub=xb. Note that ub is only required to equal u, the fluid velocity, on Sb, but is
otherwise arbitrary. We also suppose that ub is divergence-free, which is consistent with the
assumption of constant area bounded by Sb. The time derivatives can be brought inside the integrals,
resulting in

F=−� f

[∫
Ab

ub×xb dA+
∫
Ab

x× dxb
dt

dA−
∫
Ab

dub
dt

dA+
∫
A f

u×xdA+
∫
A f

x× dx

dt
dA

]

(A3)

In addition, it can be shown that∫
Ab

ub×xb dA+
∫
A f

u×xdA=0 (A4)

Thus, Equation (A3) can be rewritten as

F=−� f

∫
Ab

(
x× dxb

dt
− dub

dt

)
dA−� f

∫
A f

x× dx

dt
dA (A5)

Note that, since
∫
Ab
xb dA+∫A f

xdA=0 by Kelvin’s circulation theorem, x can be replaced with
x−Xc, where Xc is arbitrary.

Now, we manipulate the integrand in the first integral in Equation (A5). In two dimensions,

dxb
dt

=∇× dub
dt

(A6)

Then, we have

x×
(

∇× dub
dt

)
− dub

dt
(A7)

However, x×(∇×a)−a can be written as ∇(x ·a)−∇ ·(xa) in two dimensions. Integrating over
Ab and using the divergence theorem, we obtain∫

Ab

[x×(∇×a)−a]dA =
∫
Ab

[∇(x ·a)−∇ ·(xa)]dA (A8)

=
∮
Sb

[n(x ·a)−(n·x)a]ds (A9)

=
∮
Sb
x×(n×a)ds (A10)
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where n is a unit normal directed into the fluid. Therefore, the force of fluid on the body, introducing
x−Xc for x, becomes

F=−� f

∫
A f

(x−Xc)× dx

dt
dA−� f

∮
S
(x−Xc)×

(
n× dub

dt

)
ds (A11)

It can be shown that, when the two-dimensional Navier–Stokes equations in vorticity transport
form are introduced for dx/dt , then the force can be written as

F=−� f

∮
Sb

[
(x−Xc)×

(
−�

�x
�n

+n× dub
dt

)
+�n×x

]
ds (A12)

When we introduce the Neumann condition on the vorticity flux, �x/�n=−�/�t , we finally
arrive at

F=−� f

∮
Sb

[
(x−Xc)×

(
�

�t
+n× dub

dt

)
+�n×x

]
ds (A13)

It is noted that the first part of this integral represents the contribution from surface pressure,
whereas the second integral is the contribution from viscous stresses.
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